Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
J Microsc ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738840
2.
J Microsc ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656474

RESUMEN

Modern life science research is a collaborative effort. Few research groups can single-handedly support the necessary equipment, expertise and personnel needed for the ever-expanding portfolio of technologies that are required across multiple disciplines in today's life science endeavours. Thus, research institutes are increasingly setting up scientific core facilities to provide access and specialised support for cutting-edge technologies. Maintaining the momentum needed to carry out leading research while ensuring high-quality daily operations is an ongoing challenge, regardless of the resources allocated to establish such facilities. Here, we outline and discuss the range of activities required to keep things running once a scientific imaging core facility has been established. These include managing a wide range of equipment and users, handling repairs and service contracts, planning for equipment upgrades, renewals, or decommissioning, and continuously upskilling while balancing innovation and consolidation.

3.
J Microsc ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683038

RESUMEN

Developing devices and instrumentation in a bioimaging core facility is an important part of the innovation mandate inherent in the core facility model but is a complex area due to the required skills and investments, and the impossibility of a universally applicable model. Here, we seek to define technological innovation in microscopy and situate it within the wider core facility innovation portfolio, highlighting how strategic development can accelerate access to innovative imaging modalities and increase service range, and thus maintain the cutting edge needed for sustainability. We consider technology development from the perspective of core facility staff and their stakeholders as well as their research environment and aim to present a practical guide to the 'Why, When, and How' of developing and integrating innovative technology in the core facility portfolio. Core facilities need to innovate to stay up to date. However, how to carry out the innovation is not very obvious. One area of innovation in imaging core facilities is the building of optical setups. However, the creation of optical setups requires specific skill sets, time, and investments. Consequently, the topic of whether a core facility should develop optical devices is discussed as controversial. Here, we provide resources that should help get into this topic, and we discuss different options when and how it makes sense to build optical devices in core facilities. We discuss various aspects, including consequences for staff and the relation of the core to the institute, and also broaden the scope toward other areas of innovation.

4.
J Clin Invest ; 134(4)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38175705

RESUMEN

Mutations in the N-terminal WD40 domain of coatomer protein complex subunit α (COPA) cause a type I interferonopathy, typically characterized by alveolar hemorrhage, arthritis, and nephritis. We described 3 heterozygous mutations in the C-terminal domain (CTD) of COPA (p.C1013S, p.R1058C, and p.R1142X) in 6 children from 3 unrelated families with a similar syndrome of autoinflammation and autoimmunity. We showed that these CTD COPA mutations disrupt the integrity and the function of coat protein complex I (COPI). In COPAR1142X and COPAR1058C fibroblasts, we demonstrated that COPI dysfunction causes both an anterograde ER-to-Golgi and a retrograde Golgi-to-ER trafficking defect. The disturbed intracellular trafficking resulted in a cGAS/STING-dependent upregulation of the type I IFN signaling in patients and patient-derived cell lines, albeit through a distinct molecular mechanism in comparison with mutations in the WD40 domain of COPA. We showed that CTD COPA mutations induce an activation of ER stress and NF-κB signaling in patient-derived primary cell lines. These results demonstrate the importance of the integrity of the CTD of COPA for COPI function and homeostatic intracellular trafficking, essential to ER homeostasis. CTD COPA mutations result in disease by increased ER stress, disturbed intracellular transport, and increased proinflammatory signaling.


Asunto(s)
Proteína Coat de Complejo I , Proteína Coatómero , Niño , Humanos , Proteína Coatómero/genética , Proteína Coat de Complejo I/genética , Proteína Coat de Complejo I/metabolismo , Mutación , Síndrome , Aparato de Golgi/genética , Aparato de Golgi/metabolismo
6.
J Virol ; 97(10): e0072223, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37754761

RESUMEN

IMPORTANCE: Chronic hepatitis B is the most important cause of liver cancer worldwide and affects more than 290 million people. Current treatments are mostly suppressive and rarely lead to a cure. Therefore, there is a need for novel and curative drugs that target the host or the causative agent, hepatitis B virus itself. Capsid assembly modulators are an interesting class of antiviral molecules that may one day become part of curative treatment regimens for chronic hepatitis B. Here we explore the characteristics of a particularly interesting subclass of capsid assembly modulators. These so-called non-HAP CAM-As have intriguing properties in cell culture but also clear virus-infected cells from the mouse liver in a gradual and sustained way. We believe they represent a considerable improvement over previously reported molecules and may one day be part of curative treatment combinations for chronic hepatitis B.


Asunto(s)
Antivirales , Cápside , Virus de la Hepatitis B , Hepatitis B Crónica , Ensamble de Virus , Animales , Humanos , Ratones , Antivirales/clasificación , Antivirales/farmacología , Antivirales/uso terapéutico , Cápside/química , Cápside/efectos de los fármacos , Cápside/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/efectos de los fármacos , Proteínas de la Cápside/metabolismo , Células Cultivadas , Virus de la Hepatitis B/química , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/crecimiento & desarrollo , Virus de la Hepatitis B/metabolismo , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/virología , Técnicas In Vitro , Ensamble de Virus/efectos de los fármacos , Modelos Animales de Enfermedad
7.
Hepatology ; 78(4): 1252-1265, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37102495

RESUMEN

BACKGROUND AND AIMS: Effective therapies leading to a functional cure for chronic hepatitis B are still lacking. Class A capsid assembly modulators (CAM-As) are an attractive modality to address this unmet medical need. CAM-As induce aggregation of the HBV core protein (HBc) and lead to sustained HBsAg reductions in a chronic hepatitis B mouse model. Here, we investigate the underlying mechanism of action for CAM-A compound RG7907. APPROACH AND RESULTS: RG7907 induced extensive HBc aggregation in vitro , in hepatoma cells, and in primary hepatocytes. In the adeno-associated virus (AAV)-HBV mouse model, the RG7907 treatment led to a pronounced reduction in serum HBsAg and HBeAg, concomitant with clearance of HBsAg, HBc, and AAV-HBV episome from the liver. Transient increases in alanine transaminase, hepatocyte apoptosis, and proliferation markers were observed. These processes were confirmed by RNA sequencing, which also uncovered a role for interferon alpha and gamma signaling, including the interferon-stimulated gene 15 (ISG15) pathway. Finally, the in vitro observation of CAM-A-induced HBc-dependent cell death through apoptosis established the link of HBc aggregation to in vivo loss of infected hepatocytes. CONCLUSIONS: Our study unravels a previously unknown mechanism of action for CAM-As such as RG7907 in which HBc aggregation induces cell death, resulting in hepatocyte proliferation and loss of covalently closed circular DNA or its equivalent, possibly assisted by an induced innate immune response. This represents a promising approach to attain a functional cure for chronic hepatitis B.


Asunto(s)
Hepatitis B Crónica , Hepatitis B , Ratones , Animales , Virus de la Hepatitis B , Antígenos de Superficie de la Hepatitis B/metabolismo , Cápside/metabolismo , Hepatocitos/metabolismo , Interferón-alfa/farmacología , Hepatitis B/metabolismo , ADN Viral/genética
8.
Elife ; 112022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36066079

RESUMEN

Understanding the lower urinary tract (LUT) and development of highly needed novel therapies to treat LUT disorders depends on accurate techniques to monitor LUT (dys)function in preclinical models. We recently developed videocystometry in rodents, which combines intravesical pressure measurements with X-ray-based fluoroscopy of the LUT, allowing the in vivo analysis of the process of urine storage and voiding with unprecedented detail. Videocystometry relies on the precise contrast-based determination of the bladder volume at high temporal resolution, which can readily be achieved in anesthetized or otherwise motion-restricted mice but not in awake and freely moving animals. To overcome this limitation, we developed a machine-learning method, in which we trained a neural network to automatically detect the bladder in fluoroscopic images, allowing the automatic analysis of bladder filling and voiding cycles based on large sets of time-lapse fluoroscopic images (>3 hr at 30 images/s) from behaving mice and in a noninvasive manner. With this approach, we found that urethane, an injectable anesthetic that is commonly used in preclinical urological research, has a profound, dose-dependent effect on urethral relaxation and voiding duration. Moreover, both in awake and in anesthetized mice, the bladder capacity was decreased ~fourfold when cystometry was performed acutely after surgical implantation of a suprapubic catheter. Our findings provide a paradigm for the noninvasive, in vivo monitoring of a hollow organ in behaving animals and pinpoint important limitations of the current gold standard techniques to study the LUT in mice.


Healthy adults empty their bladder many times a day with little thought. This seemingly simple process requires communication between the lower urinary tract and the central nervous system. About one in five adults experience conditions like urinary incontinence, urgency, or bladder pain caused by impairments in their lower urinary tract. Despite the harmful effects these conditions have on people's health and well-being, few good treatments are available. Mice are often used to study lower urinary tract conditions and treatments. One common technique is to fill a mouse's bladder using a catheter and measure changes in pressure as the bladder empties and refills. But these procedures and the anesthesia used during them may affect bladder function and skew results. Here, De Bruyn et al. have developed a new technique that allows scientists to measure bladder function in awake, freely moving mice. The mice's bladders were photographed using a specialized X-ray based fluoroscope that captured 30 images per second over the course of three hours. A machine learning algorithm was then applied which can automatically detect the circumference of the bladder in each captured image (over 30,000 in total) and quantify its volume. This makes it is possible to measure the bladder as it empties and fills even if the mice move between time frames. The new approach showed that 'gold standard' commonly used methods have a profound effect on the bladder. Surgical implantation of a catheter reduced the bladder to a quarter of its capacity. In addition, one of the most widely used anesthetic drugs in urinary tract research was found to affect the bladder's ability to drain. The technique created by De Bruyn et al. provides a new way to study lower urinary tract function and disease in awake, moving animals. This tool would be easy for other academic and pharmaceutical laboratories to implement, and may help scientists discover new therapies for lower urinary tract conditions.


Asunto(s)
Vejiga Urinaria , Urodinámica , Animales , Fluoroscopía , Aprendizaje Automático , Ratones , Uretano , Vejiga Urinaria/diagnóstico por imagen , Vigilia
10.
Nat Immunol ; 23(6): 878-891, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35618831

RESUMEN

The ability of immune-modulating biologics to prevent and reverse pathology has transformed recent clinical practice. Full utility in the neuroinflammation space, however, requires identification of both effective targets for local immune modulation and a delivery system capable of crossing the blood-brain barrier. The recent identification and characterization of a small population of regulatory T (Treg) cells resident in the brain presents one such potential therapeutic target. Here, we identified brain interleukin 2 (IL-2) levels as a limiting factor for brain-resident Treg cells. We developed a gene-delivery approach for astrocytes, with a small-molecule on-switch to allow temporal control, and enhanced production in reactive astrocytes to spatially direct delivery to inflammatory sites. Mice with brain-specific IL-2 delivery were protected in traumatic brain injury, stroke and multiple sclerosis models, without impacting the peripheral immune system. These results validate brain-specific IL-2 gene delivery as effective protection against neuroinflammation, and provide a versatile platform for delivery of diverse biologics to neuroinflammatory patients.


Asunto(s)
Astrocitos , Productos Biológicos , Animales , Encéfalo , Humanos , Interleucina-2/genética , Interleucinas , Ratones , Enfermedades Neuroinflamatorias , Linfocitos T Reguladores
11.
J Microsc ; 286(3): 201-219, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35460574

RESUMEN

Optical mesoscale imaging is a rapidly developing field that allows the visualisation of larger samples than is possible with standard light microscopy, and fills a gap between cell and organism resolution. It spans from advanced fluorescence imaging of micrometric cell clusters to centimetre-size complete organisms. However, with larger volume specimens, new problems arise. Imaging deeper into tissues at high resolution poses challenges ranging from optical distortions to shadowing from opaque structures. This manuscript discusses the latest developments in mesoscale imaging and highlights limitations, namely labelling, clearing, absorption, scattering, and also sample handling. We then focus on approaches that seek to turn mesoscale imaging into a more quantitative technique, analogous to quantitative tomography in medical imaging, highlighting a future role for digital and physical phantoms as well as artificial intelligence.


This review discusses the state of the art of an emerging field called mesoscale imaging. Mesoscale imaging refers to the trend towards imaging ever-larger samples that exceed the classic microscopy domain and is also referred to as 'mesoscopic imaging'. In optical imaging, this refers to objects between the microscopic and macroscopic scale that are imaged with subcellular resolution; in practice, this implies the imaging of objects from millimetre up to cm size with µm or nm resolution. As such, the mesoscopy field spans the boundary between classic 'biological' imaging and preclinical 'biomedical' imaging, typically utilising lower magnification objective lenses with a bigger field of view. We discuss the types of samples currently imaged with examples, and highlight how this type of imaging fills the gap between microscopic and macroscopic imaging, allowing further insight into the organisation of tissues in an organism. We also discuss the challenges of imaging such large samples, from sample handling to labelling and optical phenomena that stand in the way of quantitative imaging. Finally, we put the current state of the art into context within the neighbouring fields and outline future developments, such as the use of 'phantom' test samples and artificial intelligence for image analysis that will underpin the quality of mesoscale imaging.


Asunto(s)
Inteligencia Artificial , Imagenología Tridimensional , Imagenología Tridimensional/métodos , Microscopía/métodos , Imagen Óptica/métodos , Tomografía/métodos
13.
Mol Neurodegener ; 16(1): 68, 2021 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-34563212

RESUMEN

BACKGROUND: Increasing evidence for a direct contribution of astrocytes to neuroinflammatory and neurodegenerative processes causing Alzheimer's disease comes from molecular and functional studies in rodent models. However, these models may not fully recapitulate human disease as human and rodent astrocytes differ considerably in morphology, functionality, and gene expression. RESULTS: To address these challenges, we established an approach to study human astrocytes within the mouse brain by transplanting human induced pluripotent stem cell (hiPSC)-derived astrocyte progenitors into neonatal brains. Xenografted hiPSC-derived astrocyte progenitors differentiated into astrocytes that integrated functionally within the mouse host brain and matured in a cell-autonomous way retaining human-specific morphologies, unique features, and physiological properties. In Alzheimer´s chimeric brains, transplanted hiPSC-derived astrocytes responded to the presence of amyloid plaques undergoing morphological changes that seemed independent of the APOE allelic background. CONCLUSIONS: In sum, we describe here a promising approach that consist of transplanting patient-derived and genetically modified astrocytes into the mouse brain to study human astrocyte pathophysiology in the context of Alzheimer´s disease.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Astrocitos/metabolismo , Encéfalo/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Placa Amiloide/metabolismo
14.
Cell Rep ; 36(8): 109618, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34433017

RESUMEN

Hematopoietic stem and progenitor cell (HSPC) engraftment after transplantation during anticancer treatment depends on support from the recipient bone marrow (BM) microenvironment. Here, by studying physiological homing of fetal HSPCs, we show the critical requirement of balanced local crosstalk within the skeletal niche for successful HSPC settlement in BM. Transgene-induced overproduction of vascular endothelial growth factor (VEGF) by osteoprogenitor cells elicits stromal and endothelial hyperactivation, profoundly impacting the stromal-vessel interface and vascular architecture. Concomitantly, HSPC homing and survival are drastically impaired. Transcriptome profiling, flow cytometry, and high-resolution imaging indicate alterations in perivascular and endothelial cell characteristics, vascular function and cellular metabolism, associated with increased oxidative stress within the VEGF-enriched BM environment. Thus, developmental HSPC homing to bone is controlled by local stromal-vascular integrity and the oxidative-metabolic status of the recipient milieu. Interestingly, irradiation of adult mice also induces stromal VEGF expression and similar osteo-angiogenic niche changes, underscoring that our findings may contribute targets for improving stem cell therapies.


Asunto(s)
Médula Ósea/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Estrés Oxidativo/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Células de la Médula Ósea/citología , Movimiento Celular/fisiología , Células Cultivadas , Ratones , Nicho de Células Madre/fisiología , Trasplante de Células Madre/métodos
15.
Curr Opin Chem Biol ; 63: 188-199, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34198170

RESUMEN

Molecular imaging aims to depict the molecules in living patients. However, because this aim is still far beyond reach, patchworks of different solutions need to be used to tackle this overarching goal. From the vast toolbox of imaging techniques, we focus on those recent advances in optical microscopy that image molecules and cells at the submicron to centimeter scale. Mesoscopic imaging covers the "imaging gap" between techniques such as confocal microscopy and magnetic resonance imagingthat image entire live samples but with limited resolution. Microscopy focuses on the cellular level; mesoscopy visualizes the organization of molecules and cells into tissues and organs. The correlation between these techniques allows us to combine disciplines ranging from whole body imaging to basic research of model systems. We review current developments focused on improving microscopic and mesoscopic imaging technologies and on hardware and software that push the current sensitivity and resolution boundaries.


Asunto(s)
Medios de Contraste/química , Colorantes Fluorescentes/química , Imagen Molecular/métodos , Animales , Transporte Biológico , Aprendizaje Profundo , Humanos , Imagen por Resonancia Magnética , Microscopía Confocal , Imagen Multimodal , Tomografía Computarizada por Tomografía de Emisión de Positrones , Coloración y Etiquetado , Tomografía Computarizada de Emisión de Fotón Único
16.
J Microsc ; 284(1): 56-73, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34214188

RESUMEN

A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated , quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist's experiments, while more than half have even failed to reproduce their own experiments. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g. DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common standards and guidelines for quality assessment and reproducibility. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models and tools, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper (1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; (2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of stakeholders including, researchers, imaging scientists, bioimage analysts, bioimage informatics developers, corporate partners, funding agencies, standards organizations, scientific publishers and observers of such; (3) outlines the current actions of the QUAREP-LiMi initiative and (4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics.


Asunto(s)
Microscopía , Estándares de Referencia , Reproducibilidad de los Resultados
17.
BMC Biol ; 19(1): 152, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330271

RESUMEN

BACKGROUND: Array tomography (AT) is a high-resolution imaging method to resolve fine details at the organelle level and has the advantage that it can provide 3D volumes to show the tissue context. AT can be carried out in a correlative way, combing light and electron microscopy (LM, EM) techniques. However, the correlation between modalities can be a challenge and delineating specific regions of interest in consecutive sections can be time-consuming. Integrated light and electron microscopes (iLEMs) offer the possibility to provide well-correlated images and may pose an ideal solution for correlative AT. Here, we report a workflow to automate navigation between regions of interest. RESULTS: We use a targeted approach that allows imaging specific tissue features, like organelles, cell processes, and nuclei at different scales to enable fast, directly correlated in situ AT using an integrated light and electron microscope (iLEM-AT). Our workflow is based on the detection of section boundaries on an initial transmitted light acquisition that serves as a reference space to compensate for changes in shape between sections, and we apply a stepwise refinement of localizations as the magnification increases from LM to EM. With minimal user interaction, this enables autonomous and speedy acquisition of regions containing cells and cellular organelles of interest correlated across different magnifications for LM and EM modalities, providing a more efficient way to obtain 3D images. We provide a proof of concept of our approach and the developed software tools using both Golgi neuronal impregnation staining and fluorescently labeled protein condensates in cells. CONCLUSIONS: Our method facilitates tracing and reconstructing cellular structures over multiple sections, is targeted at high resolution ILEMs, and can be integrated into existing devices, both commercial and custom-built systems.


Asunto(s)
Imagenología Tridimensional , Tomografía , Coloración y Etiquetado , Tomografía Computarizada por Rayos X , Flujo de Trabajo
19.
Thorax ; 76(11): 1146-1149, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33859053

RESUMEN

Diagnosing cystic fibrosis (CF) when sweat chloride is not in the CF range and less than 2 disease-causing CFTR mutations are found requires physiological CFTR assays, which are not always feasible or available. We developed a new physiological CFTR assay based on the morphological differences between rectal organoids from subjects with and without CF. In organoids from 167 subjects with and 22 without CF, two parameters derived from a semi-automated image analysis protocol (rectal organoid morphology analysis, ROMA) fully discriminated CF subjects with two disease-causing mutations from non-CF subjects (p<0.001). ROMA, feasible at all ages, can be centralised to improve standardisation.


Asunto(s)
Fibrosis Quística , Organoides , Fibrosis Quística/diagnóstico por imagen , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Mutación
20.
Chemistry ; 27(34): 8605-8641, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-33733502

RESUMEN

Despite the fact that transmembrane proteins represent the main therapeutic targets for decades, complete and in-depth knowledge about their biochemical and pharmacological profiling is not fully available. In this regard, target-tailored small-molecule fluorescent ligands are a viable approach to fill in the missing pieces of the puzzle. Such tools, coupled with the ability of high-precision optical techniques to image with an unprecedented resolution at a single-molecule level, helped unraveling many of the conundrums related to plasma proteins' life-cycle and druggability. Herein, we review the recent progress made during the last two decades in fluorescent ligand design and potential applications in fluorescence microscopy of voltage-gated ion channels, ligand-gated ion channels and G-coupled protein receptors.


Asunto(s)
Proteínas de la Membrana , Receptores Acoplados a Proteínas G , Membrana Celular , Colorantes Fluorescentes , Ligandos , Microscopía Fluorescente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...